Math 102

Krishanu Sankar

September 20, 2018

Announcements

- Next week - I will be away. Colin Macdonald (section 104) will substitute on Tuesday and Thursday.
- Reminders - MLC, Piazza

Goals Today

- The derivative, graphically
- Critical points, local minima/maxima
- $f^{\prime \prime}(x)$ and inflection points
- Graph sketching
- Some rules of differentiation
- The Power Rule
- The Product Rule and Quotient Rule

Last Time: Matching

Critical Points

- If $f^{\prime}(a)=0$, then a is a critical point of the function $f(x)$.

Critical Points

- If $f^{\prime}(a)=0$, then a is a critical point of the function $f(x)$.
- This means that at $x=a$, the tangent line to the graph of $f(x)$ has slope 0 .

Critical Points

- If $f^{\prime}(a)=0$, then a is a critical point of the function $f(x)$.
- This means that at $x=a$, the tangent line to the graph of $f(x)$ has slope 0 .

Critical Points

- Local maximum: occurs when the graph of $f^{\prime}(x)$ goes from positive to negative.
- Local minimum: occurs when the graph of $f^{\prime}(x)$ goes from negative to positive.

Critical Points

- Local maximum: occurs when the graph of $f^{\prime}(x)$ goes from positive to negative.
- Local minimum: occurs when the graph of $f^{\prime}(x)$ goes from negative to positive.
- Question: Can you have a critical point which is neither a local minimum nor local maximum?

Answer: Yes! This will happen when the graph of $y=f^{\prime}(x)$ reaches zero but does not cross the axis.

Answer: Yes! This will happen when the graph of $y=f^{\prime}(x)$ reaches zero but does not cross the axis.

$y=f^{\prime \prime}(x)$ in orange. In this case, $f^{\prime \prime}(x)$ is a linear function, $f^{\prime}(x)$ is a degree 2 polynomial, and $f(x)$ is a degree 3 polynomial.

The Second Derivative

- The derivative of $f^{\prime}(x)$ (called the second derivative) is denoted by $f^{\prime \prime}(x)$.

The Second Derivative

- The derivative of $f^{\prime}(x)$ (called the second derivative) is denoted by $f^{\prime \prime}(x)$.
- It measure the concavity (i.e., 'curvedness) of the graph of $y=f(x)$.

$$
\begin{gathered}
f^{\prime \prime}(x)>0 \Longrightarrow \text { concave up (like a cup) } \\
f^{\prime \prime}(x)<0 \Longrightarrow \text { concave down (like a frown) } \\
f^{\prime \prime}(x)=0 \Longrightarrow \text { inflection point }
\end{gathered}
$$

- https://www.desmos.com/calculator/ unskahz0pf

Position, velocity, acceleration

- Let $x(t)$ be the position of an object at time t.

Position, velocity, acceleration

- Let $x(t)$ be the position of an object at time t.
- $x^{\prime}(t)=v(t)$ is the velocity.

Position, velocity, acceleration

- Let $x(t)$ be the position of an object at time t.
- $x^{\prime}(t)=v(t)$ is the velocity.
- $x^{\prime \prime}(t)=v^{\prime}(t)=a(t)$ is the acceleration.

Which is x, v, a ?

(A) x, v,
(B) x, v_{1}
(C) x, v, a
(D) x, a

Check max/mins --> zeros, check inc/dec --> +/-.

Which is x, v, a ?

(A) x, v,
(B) x, v_{1}
(C) x, v, a
(D) x, v, a

Check max/mins --> zeros, check inc/dec --> +/-.

Example on the board: given the graph of $f(x)$, sketch a graph of $f^{\prime}(x)$.

Now you try!

Visually sketching the derivative

Strategy:

- Identify the critical points
- Determine whether the derivative is positive or negative in between
- (Optional, for more accuracy) Identify the inflection points
- Sketch! Remember, steeper = bigger derivative
'bigger' means in absolute value

The Power Rule

$f(x)$	$f^{\prime}(x)$
x	1
x^{2}	$2 x$
x^{3}	$3 x^{2}$
\vdots	\vdots
x^{n}	$n x^{n-1}$

The Power Rule

$f(x)$	$f^{\prime}(x)$
x	1
x^{2}	$2 x$
x^{3}	$3 x^{2}$
\vdots	\vdots
x^{n}	$n x^{n-1}$

$f(x)$	$f^{\prime}(x)$
$\sqrt{x}=x^{1 / 2}$	$\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$
$\sqrt[3]{x}=x^{1 / 3}$	$\frac{1}{3} x^{-2 / 3}=\frac{1}{3 \sqrt[3]{x}}$
$1 / x=x^{-1}$	$-x^{-2}=-1 / x^{2}$

This works for negative and fractional powers too. For example, if $f(x)=\sqrt{x}=x^{1 / 2}$, then $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$. (Proof on board)

The Power Rule

$f(x)$	$f^{\prime}(x)$
x	1
x^{2}	$2 x$
x^{3}	$3 x^{2}$
\vdots	\vdots
x^{n}	$n x^{n-1}$

$f(x)$	$f^{\prime}(x)$
$\sqrt{x}=x^{1 / 2}$	$\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$
$\sqrt[3]{x}=x^{1 / 3}$	$\frac{1}{3} x^{-2 / 3}=\frac{1}{3 \sqrt[3]{2}}$
$1 / x=x^{-1}$	$-x^{-2}=-1 / x^{2}$

This works for negative and fractional powers too. For example, if $f(x)=\sqrt{x}=x^{1 / 2}$, then $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$. (Proof on board)
Exercise: Using the definition as a limit, prove that if $f(x)=1 / x$, then $f^{\prime}(x)=-1 / x^{2}$.

Bonus Slide - $f(x)=\sqrt{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Bonus Slide - $f(x)=\frac{1}{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x}{x(x+h)}-\frac{x+h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{x(x+h)}}{h}=\lim _{h \rightarrow 0} \frac{-h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}}
\end{aligned}
$$

Exercise: For each function below, write the equation of the tangent line at the given point.

- Tangent to $y=x^{2}$ through the point $(-3,9)$
- Tangent to $y=\frac{6}{x}$ through the point $(2,3)$

Hint: The line through $\left(x_{0}, y_{0}\right)$ with slope m is given by the equation

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

Bonus Slide $-y=x^{2}$

$$
\begin{aligned}
f(x)=x^{2} & \Longrightarrow f(-3)
\end{aligned}=9, ~=f^{\prime}(-3)=-6
$$

So the tangent line at $(-3,9)$ has equation $y-9=-6(x+3)$, which can be rewritten as

$$
y=-6 x-9
$$

Bonus Slide - $y=\frac{6}{x}$

$$
\begin{gathered}
f(x)=\frac{6}{x} \Longrightarrow f(2)=3 \\
f^{\prime}(x)=-\frac{6}{x^{2}} \Longrightarrow f^{\prime}(2)=-\frac{3}{2}
\end{gathered}
$$

So the tangent line at $(2,3)$ has equation $y-3=-\frac{3}{2}(x-2)$, which can be rewritten as

$$
y=-\frac{3}{2} x+6
$$

Product and Quotient Rules

- The Product Rule

$$
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

has a proof by picture - https://www. desmos.com/calculator/w3uck8beru

- The Quotient Rule

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Recap

- The derivative, graphically
- Critical points, local minima/maxima
- $f^{\prime \prime}(x)$ and inflection points
- Graph sketching
- Some rules of differentiation
- The Power Rule
- The Product Rule and Quotient Rule

Bonus - Proof of Product Rule

Note: The following proof is purely for your viewing pleasure, and is not something you will be evaluated on!

Let $P(x)$ denote the function $P(x)=f(x) g(x)$. Then

$$
\begin{aligned}
P^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{P(x+h)-P(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}
\end{aligned}
$$

Bonus - Proof of Product Rule

Let's create some notation. Write
$\Delta f=f(x+h)-f(x)$ and $\Delta g=g(x+h)-g(x)$.
By checking the algebra, you will see that $f(x+h) g(x+h)-f(x) g(x)$ is equal to

$$
(\Delta f)(\Delta g)+(\Delta f) g(x)+f(x)(\Delta g)
$$

Thus,

$$
P^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(\Delta f)(\Delta g)+(\Delta f) g(x)+f(x)(\Delta g)}{h}
$$

Bonus - Proof of Product Rule

$$
P^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(\Delta f)(\Delta g)+(\Delta f) g(x)+f(x)(\Delta g)}{h}
$$

But

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{(\Delta f) g(x)}{h}=g(x) \lim _{h \rightarrow 0} \frac{\Delta f}{h}=g(x) f^{\prime}(x) \\
\lim _{h \rightarrow 0} \frac{f(x)(\Delta g)}{h}=f(x) \lim _{h \rightarrow 0} \frac{\Delta g}{h}=f(x) g^{\prime}(x) \\
\lim _{h \rightarrow 0} \frac{(\Delta f)(\Delta g)}{h}=\left(\lim _{h \rightarrow 0} \Delta f\right) \cdot\left(\lim _{h \rightarrow 0} \frac{\Delta g}{h}\right)=0 \cdot g^{\prime}(x)=0
\end{gathered}
$$

